An Experiment in Remote Monitoring of Mu-Ranging

Operation at Mariner Mars 1971 Superior
Conjunction

D. E. Erickson and J. W. Layland

Communications Systems Research Section

This article describes the computer configurations and software used at JPL in
an experimental remote monitoring and verification of the operation of the
Sequential Component Ranging System during the Superior Conjunction of the
Mariner Mars 1971 spacecraft. At the time of the spacecraft’s closest approach to
the Sun, the ranging operation twas subjected to both an extremely low signal-to-
noise ratio and perturbations from solar plasma. The Sigma 5 computer at JPL
was programmed to perform a Maximum-Likelihood range measurement, using the
range-code correlation values supplied (in real time) from the ranging system at
the Mars Deep Space Station (DSS 14). The Maximum-Likelihood decision process
provided about a 1.5-dB improvement in ranging error probability considering
additive noise alone. The process was, however, relatively impractical to implement
in the 920 computer which controlled the ranging operation at DSS 14 and per-
formed range measurement via a sequential decision process.

I. Introduction

This article describes the computer configurations and
software used at JPL in an experimental remote monitor-
ing and verification of the operation of the Sequential
Component Ranging System (Refs. 1 and 2) during the
Superior Conjunction of the Mariner Mars 1971 (MM’71)
spacecraft. At the time of the spacecraft’s closest approach
to the Sun, the ranging operation was subjected to both an
extremely low signal-to-noise ratio and perturbations from
solar plasma. The Sigma 5 computer at JPL was pro-
grammed to perform a Maximum-Likelihood range mea-
surement, using the range-code correlation values supplied

156

(in real time) from the ranging system at DSS 14. The
Maximum-Likelihood decision process provided about a
1.5-dB improvement in ranging error probability consider-
ing additive noise alone (Ref. 1, p. 78). The process was,
however, relatively impractical to implement in the 920
computer which controlled the ranging operation at DSS
14 and performed range measurement via a sequential
decision process.

Fig. 1 shows a block diagram of the equipment in-
volved. The ranging system proper was operated from
DSS 14 during the period of interest. The normal data

JPL TECHNICAL REPORT 32-1526, VOL. XV

path for the ranging output data was via the Ground
Communications Facility (GCF) teletype (TTY) lines to
the Ranging Advisor position at Mission Control. For this
experiment, the ranging data were also directed to the
JGUS terminal in the Telecommunication Building. The
SDS-910 computer which is attached to JGUS, in turn,
transferred the ranging output to a time-shared program
in the Sigma 5, which recalculated the range via the
Maximum-Likelihood technique. At the completion of
each range acquisition, the Sigma 5 program had either
agreed with the sequential decision process or had cal-
culated a correction term (in microseconds of round-trip
light time) to be added to the range calculated by the
ranging system at DSS 14. The appropriate result was
relayed to the 910 computer and then, via the GCF TTY
circuitry, to Mission Control. The likelihood function
itself, the a posteriori probability of possible range values,
was subsequently plotted (non-real time) and used as a
final validity check on the range measurements. During
the experiment, the Sigma 5 continued to be used in the
background mode for other DSN development activities.

Il. Software Structure in the Sigma 5

The relevant software operated in the Sigma 5 con-
sisted of two distinct segments: the ranging monitoring
program itself, written in FORTRAN, and a JPL-modified
version of the Sigma Batch Timesharing Monitor. Both
parts will be described in the following section.

Fig. 2 is an example of the data output from the ranging
system at DSS 14 onto the GCF TTY lines. These data are
received by the 910 in this form and delivered intact to the
ranging monitoring program in the Sigma 5. The lines are
scanned by the Sigma program to select relevant data from
the ranging data format and to eliminate irrelevant
“garbage” records. The “component number” field is
checked to ensure that all of the needed correlation values
are received. The “X correlation” and “Y correlation”
fields represent the values obtained in the ranging re-
ceiver by correlation of the received range code against
the local reference range code and a quadrature, or one-
quarter-cycle delayed copy of the local reference range
code. For square-wave range codes, these two correlation
values are sufficient to estimate the phase and amplitude
of the received range code and, from this, to reconstruct
the correlation function between the local reference range
code and all possible delays of the received range code.
Assuming that the received code is disturbed by additive
white gaussian noise, this latter correlation function is, in
fact, the likelihood function, or the a posteriori probability
of all possible range (delay) values.

JPL TECHNICAL REPORT 32-1526, VOL. XV

Each ranging component received is an independent
measurement of the range, with a resolution and am-
biguity which depend upon the period of that square-
wave component. The likelihood functions from indepen-
dent measurements of the same parameter may be added
directly, provided that proper account is taken of the
code ambiguities and of the delays induced in the local
reference code by the ranging system software at DSS 14.
This accumulation of the likelthood function is done within
the Sigma range monitoring software to a resolution of
one-quarter cycle of the highest frequency code com-
ponent. At the end of a range acquisition sequence, the
location of the largest value is the most probable range
value, or the Maximum-Likelihood estimate of the range
value. The behavior of the sequential decision process
with its attendant shifts of the local reference code has
been concurrently reconstructed from the “X correlation”
values. At the end of the acquisition, if the Maximum-
Likelihood range estimate and the sequential decision
process agree, that fact is transmitted to the 910 and then
to appropriate destinations on the GCF TTY network. If
they do not agree, a correction term is transmitted.

The Sigma Batch Timesharing Monitor (BTM) provides
a limited multiprogramming operation, with a single
background batch-stream and multiple time-shared
terminal-oriented jobs. The batch stream operates from
one area of the main memory, and the time-shared ter-
minal jobs are swapped in and out of another area of
memory. The time-sharing sub-executive, a collection of
monitor routines occupying approximately 3.5K words,
mediates between these two operations. Since both
memory areas must contain a minimum of 12K words and
the basic Sigma monitor occupies at least 7K words, opera-
tion vin BTM with our 32K-word Sigma 5 was clearly
impossible; yet, for ease of operation and flexibility in
developing an experimental operation such as was per-
formed with the MM’71 ranging, BTM was equally
clearly desirable.

With some modifications to the time-sharing sub-
executive, the batch-stream jobs could be caused to be
swapped in and out of the same area of memory from
which the terminal tasks were executed. Such a change
would idle the entire system while the swap took place,
but the alternatives were to abandon this monitor or to
acquire an additional 16K words of main memory from
which terminal-connected tasks could be executed. Given
some reasonable assumptions as to terminal behavior, the
swapping operation will idle less resources than the addi-
tional memory area, which is idle whenever all terminal
tasks are waiting for data. For a general-purpose time-
sharing system, the needed assumption is eight or fewer

157

“typical” users. For our application where the terminals
are, in fact, “minicomputers” with real-time data, the
terminal behavior can be controlled, (if control is needed)
to limit the extent of swapping and thus make the swap-
ping of batch-stream jobs the preferable operation.

The needed modifications were performed primarily
during the spring and summer of 1971. The time-sharing
sub-executive was segmented into three parts. A minimal
scheduler and the interrupt-connected portions of the
terminal device handling software are always resident
and, together with terminal-oriented buffers, occupy
about 0.7K words. The available batch-stream area is
22.5K words, into which the appropriate programs are
swapped. When terminal-connected tasks are active,
another 2K-word segment of the time-sharing sub-
executive occupies the lower end of this area. This second
segment provides the remainder of the scheduling opera-
tions and analyzes the requests for monitor service (file
170, etc.) by terminal-connected tasks. The third and last
segment of the sub-executive interprets command-
character strings from the terminal and is swapped in
only when initializing a terminal-connected task.

After operation of the modified BTM was satisfactorily
verified in this form, device-handling software to control
the intercomputer link to the 910 was added and inter-
faced to BTM on a character-oriented level. The JPL. BTM
system was used in this form for the experiments with
MM'71 and exists in that form now. A change to a message-
oriented interface for the intercomputer links will be per-
formed when higher-speed data transfers are needed.
After the JPL. BTM system was operational for some time,
Xerox announced an essentially identical Batch Swapping
BTM system for the small Sigma systems which were
delivered in late 1972. Changeover to the manufacturer-
supported BS:BTM will eventually be done, but the inter-
computer link-handling interface must be added by JPL
personnel.

lIl. Software Structure in the 910/JGUS
Terminal

To properly handle real-time monitoring of the ranging
system, the 910 had to be supplied with a program which
would route data among various devices (Table 1). The
170 operations which it needed to perform were: input
or output on the JGUS teletype (TTI or TTO), input from
or output to the Sigma 5 computer via the intercomputer
link (ST or SO), input from the keyboard or output to the
typewriter (KB or TTY), or input from the photo-reader

158

or output to the paper-tape punch (PR or PP). These eight
1/0 functions may be considered to be separate devices
except for the typewriter and keyboard TTY and KB,
which must be coordinated because output messages
should not be interrupted for characters of input.

Only the Sigma link devices SI and SO are capable of
any great speed; since data transmitted on this link would,
for the most part, be transmitted or received on one of
the slower devices as well, only character-oriented 170
was needed. This character orientation resulted in the
simplest interface to the time-sharing monitor on the
Sigma computer.

Some of the functions performed by the 910 had to be
relatively independent. For instance, if the Sigma 5 link
failed, a paper tape of the ranging data would still be
punched. To .aid in the control of independent functions
on the 910, a multitasking monitor was developed. Once
the monitor was completed, independence of the tasks
was easy to implement and the application program Mu
910 was very easy to debug.

Mu 910 is composed of many independent tasks which
transfer characters from one device handler to another
under the control of a set of software switches, as well as
the hardware sense switches (SSs) of the 910. Other tasks
control the settings of the software switches. Some switches
in Table 2 are set by a task which reads and interprets
operator keyins from the 910’s keyboard (KB). This task
is called into action when hardware sense switch 1 (S51)
is set. Others (Table 3) are altered by a task which scans
data being received from the Sigma computer when the
switch RNG is set to ON. SS2 and SS3 are used as on-off
switches for PP and PR, respectively. Fig. 3 shows the
possible paths which the data can take depending on the
switch settings, 3a showing which switch setting makes
each path active, and 3b showing the real-time monitoring
configuration.

To operate Mu 910, the program must be started and,
using keyins, the switches properly set. Using the key-
board, the operator logs onto BTM on the Sigma and
loads the previously compiled program from the Sigma
random-access disk (RAD). This program then completes
the connection by sending the appropriate characters to
the 910 to switch it to teletype rather than keyboard input.

The operator at the 910 may use the typewriter for
three keyboard control features. He may alter the keyin
controlled switches (see Table 2), check the status of

JPL TECHNICAL REPORT 32-1526, VOL. XV

these switches, or send a double escape to BTM. To acti-
vate these features, the operator sets SS1 on the 910
console and then resets it. The keyboard control program
will prompt with a square right bracket and will accept
an operator keyin. The legal keyins are shown in Table 4.
An illegal keyin causes the program to type KEYERR and
repeat the prompt.

The keyin-controlled switch RNG is a master for the
Sigma-controlled switches. When RNG is off, RANGE,
RGO, and TTYON are also off. When RNG is on, the
task SIEAR (Sigma Input Ear) scans each data line, be-
ginning with the first character which is not a line feed
or carriage return, for the sequence <RANGE+ >!
(! representing a carriage return). If it finds this sequence,
it turns RANGE on and scans subsequent lines for “A” or
“<RANGE—>!" or “<RGO+ >!". The first two of
these turn RANGE off; the latter turns RGO on. The
appearance of a “A” in the character stream from the
Sigma 5 indicates that the ranging program on the Sigma
has exited to the monitor, probably because of a program
error, and that cleanup/termination of ranging operations
must be performed. If RGO is on, the scanner looks for
“A7, “<RANGE—->!", “<RGO—>!", or “<HEAD>".
The last of these is a signal to send a teletype header with
the data on the remainder of the line and turn TTYON on.
The full header line is:

“<HEAD >aaaa dd/tttt!”

where aaaa is the four-character teletype destination
address, dd is the day of the month, and tttt is the time
in GMT.

Once TTYON is on, data received from the Sigma are
transmitted on the teletype until “A”, “<RANGE — >1”,
“<RGO—>1" or “<EOM>!" is received. The last of
these causes an End-of-Message sequence to be trans-
mitted and TTYON to be shut off. Note that, when RNG
is shut off, it automatically shuts off RANGE, which in
turn shuts off RGO, which kills TTYON so that no
switches are left dangling.

The Sigma ranging program therefore outputs
“<RANGE+ >” to connect itself with the ranging input
device. It outputs “<RGO+ >1” to type a message on
the 910 typewriter and follows it with “<RGO—>1", To
transmit to the JPAS teletype, it sends “<RGO+ >!”
followed by “<HEAD> JPAS dd/tttt!”, the message,
“<EOM>!” and “<RGO—>!",

JPL TECHNICAL REPORT 32-1526, VOL. XV

IV. 910 Multitasking Monitor

The 910 Multitasking Monitor (MULTI) is a set of sub-
routines and 910 POPSs (Programmed Operators: subrou-
tines with a special calling sequence). These are listed in
Table 5. When using MULTI, a program may be con-
sidered to be composed of interrupt routines and tasks.
An interrupt routine is a section of code which is given
control due to a hardware interrupt, performs a specific
action such as reading a character from an I/0 buffer and
transferring it to a program buffer, and then relinquishes
control to the code which was being executed before the
interrupt occurred. A task under MULTTI is a conceptual
unit of the program which performs a set of actions in a
specific sequence. It may be temporarily interrupted by a
hardware interrupt, but not by another task. A task re-
linquishes control voluntarily to allow a higher-priority
task to gain control or to await an action by another task
or interrupt routine.

Each task is identified with a Task Control Block (TCB).
The TCB is a data area which MULTI uses for book-
keeping for the task. It is an eight-word block (Fig. 4a)
which contains the priority, starting address, and status of
the task; a four-word area to save the registers and return
address when the task relinquishes control; and a one-
word chain field used by MULTTI for stringing the tasks
together into queues. By using queues of TCBs, MULTT is
not restricted as to the number of tasks which it can
control. The priority of a task is a small non-negative
integer. The first task used from a queue is the one with
the highest priority.

The first task is created and the multitasking monitor
initialized by a subroutine call to INIMON, passing as a
parameter, the TCB address for the first task. With this
call, the CPU queue is cleared, a timing task is added to
the CPU queue, control is returned to the point follow-
ing the call, and the named TCB is made the current TCB.
The current TCB or current task is the one which has
control of the CPU. It executes until it relinquishes con-
trol, and at that time a new current task is taken from the
CPU queue. New tasks may be created by using the
“FORK” POP, passing to MULTI the address of the TCB
of the task to be created. The new task will be added to
the CPU queue.

The current task may relinquish control in one of four
ways: DIE, BLOCK, WAIT, or CHECK. Each of these is
a POP. DIE has no parameters and specifies that the cur-
rent task relinquishes control and its TCB is not to be put
into any queue. It is forgotten, but may be restarted by a

159

FORK from another task. BLOCK and WAIT are similar
POPs. With BLOCK and WAIT, the parameters are a
Resource Control Block (RCB) address and a State Report
Block (SRB) address, respectively. RCBs and SRBs are
identical in structure and differ only in function. (They
are described in the following paragraphs.) CHECK is a
BLOCK on the CPU queue.

The RCBs and SRBs are two-word data blocks used for
communication among tasks. The first word is a count,
and the second is the head of a queue. The queue is empty
when the count is not positive. When the count is positive,
it represents the number of TCBs on the queue. The head
field is a pointer to the first TCB, while the chain field of
each TCB points to the next TCB on the queue. The
TCBs are arranged on the queue by descending priority.
Among TCBs of the same priority, first-in, first-out order
is observed. When a new TCB is put onto a queue, it is
placed immediately before the first TCB of lower priority.
To facilitate end conditions in this search down the queue,
a dummy TCB is attached after the end of every queue
whose priority is —2 and whose chain field points to
itself. This was also an aid in debugging MULTI.

An RCB is used to control the use of a limited resource,
such as an I/O device, which can be used by only one task
at a time. The RCB controlling CPU usage is CPUQUE.
If the current task needs a limited resource, it blocks on
its RCB with the BLOCK POP. If the count field of the
RCB is non-negative, the resource is not available. In this
case, the current TCB is added to the queue on that RCB,
and the count is increased by one. If the count is negative,
it is bumped by one to signal unavailability to other tasks,
and the current task is given control of the resource. In
blocking, however, the task has lost its right to the CPU,
so MULTI blocks it on CPUQUE (whose count is never
negative). Now the CPU is available, and MULTT unblocks
it by removing the first task on CPUQUE, making it the
new current task and reducing the count of CPUQUE
by one.

When a resource becomes available, its RCB is un-
blocked by either a task or an interrupt routine using the
UNBLOCK POP. The count field in the RCB is decre-
mented by one, and, if the count is now non-negative, the
queue is not empty and the first TCB is removed and
blocked on the CPUQUE. No routine except MULTI
should unblock the CPUQUE. After an UNBLOCK, con-
trol is returned to the routine issuing it and there is no
change of current task. The typical sequence for a task
is to block on a resource, use it, and then unblock it.

160

There are other uses for an RCB. To wait for another
task to fill a buffer, either character or message, and then
signal the other task that it is available again, a task may
block on a message RCB, read the message, and then
unblock a buffer RCB. The task which sends the message
blocks on the buffer RCB, writes the message in the
buffer, and then unblocks the message RCB. An RCB
may be unblocked even though the count is negative, and
the count will still be decremented. In this way, unblocks
may be accumulated.

The above feature is employed in the use of circular
character buffers. Two RCBs control each circular buffer;
they are called Number of Characters (NC) and Number
of Characters Left (NCL). There are also two pointers,
IN and OUT. To put a character into the buffer, a task
blocks on NCL, puts the character into the buffer in posi-
tion IN, updates IN to point to the next character circu-
larly, and then unblocks NC. To get a character from the
buffer, a task blocks on NC, takes a character from
position OUT in the buffer, updates OUT, and unblocks
NCL. Thus, when the NCL count is negative, its absolute
value is the number of character positions left to fill the
buffer. Similarly, when the NC count is negative, its
absolute value is the number of characters in the buffer.

When a task performs a WAIT on a SRB, if the count is
non-negative, the action is the same as BLOCK. The TCB
is added to the queue and the count is bumped. If, how-
ever, the count is negative, it is not bumped, but the TCB
is still blocked on CPUQUE. The count of an SRB is reset
to zero from a negative value by a SHUT POP. If the
count is non-negative, SHUT has no effect. SIGNAL re-
moves all TCBs from an SRB queue, blocks them on
CPUQUE, and resets the count to a negative value.

A task waits for an SRB in situations similar to test
loops in non-multitasking programming, MULTI provides
SRBs which it signals and shuts, depending on the states
of the hardware sense switches. BPnON, n = 1, 2, 3, or 4,
is SIGNALed when the sense switch is set and SHUT
when it is reset; BPnOFF operation is the opposite. Thus,
a task may WAIT for BPION if it wishes to be reactivated
when SS1 is set. These SRBs are updated each time the
current task relinquishes control by DIE, BLOCK, WAIT,
or CHECK. Also updated by MULTI at this time are the
RCBs of WBLK and BREAK. WBLK controls the use
of the W buffer which four of the 1/0 devices share. The
BREAK RCB is unblocked once each time the hardware
interrupt button is pressed. The subroutine call to
INIMON which initializes MULTTI also initializes these
RCBs and SRBs.

JPL TECHNICAL REPORT 32-1526, VOL. XV

A timing task FORKed by MULTT at initialization time
runs when all other tasks are blocked on RCBs or waiting
for SBRBs. It uses an SRB named TIC. The sequence of
operations performed by this task is as follows: SIGNAL
TIC, SHUT TIC, loop through 128 CHECKSs, and branch
back to the start. The CHECK POPs allow any task of
higher priority to take control. If no higher-priority tasks
want the CPU, the timing task continues. When not inter-
rupted, the entire loop takes about one-half second. A
task wishing to wait for approximately n seconds may
loop through 2n WAITs for TIC. This obviously is not
very precise, but it was perfectly satisfactory for five-
second time-outs on typewriter and paper-tape input.

Several I/0 routines are also provided with the multi-
tasking monitor. These consist of device interrupt handlers
and device tasks, as well as subroutines which are to be
shared by user tasks. The interrupt routines effect the
actual data transfer between the physical device and a
circular buffer in core. The device tasks control the acti-
vating of the interrupt routines, the sharing of the W
buffer through the WBLK RCB, and the timing-out of
170 operations which use the W buffer, The shared sub-
routines are the interfaces between the user and the device
handlers. To use a given I/0O device, a user task blocks on
the RCB associated with that device. The devices and
RCBs are listed in Table 1 along with the names of the
entry points to the non-translating subroutines associated
with that device.

To perform typewriter output, a task blocks on TYIW
and then makes subroutine calls to TYPPUT, with the
characters to be typed right-aligned in the A register.
When completed with its message, the task unblocks
TYIW, making it available to other tasks. TYPPUT puts
the character in a circular buffer, and, if it was previously
empty, it unblocks the device task, which in turn acquires
the W buffer and starts the interrupt routine.

For input, the situation is a bit more complicated. We
would like to start filling up the buffer when input is
requested, and not as each character is removed from it.
To read from the keyboard, a task blocks on KB1IW and

JPL TECHNICAL REPORT 32-1526, VOL. XV

calls KBSETP, which starts the buffer-filling operation.
Then, to get a character from the buffer into the A regis-
ter, the task calls KBPULL. When it is done with its use
of the keyboard, the task calls KBREL to halt the buffer-
filling operation and then unblocks KBIW to allow its
use by other tasks. Another entry KBCANC is provided
for other tasks to cancel the current keyboard input opera-
tion. This is used by the keyboard time-out task, for
example. Usually, before a task begins a keyboard input
operation, it blocks on TY1W as well as KBIW to elimi-
nate interference from typing tasks.

Other entries are available which do appropriate char-
acter translation and call xxxPUT or xxxPULL. These are
named xxxOUT and xxxGET, respectively. Thus, TTGET
calls TTPULL and translates the input character from
TTY code to BCD. The translation routines TYPOUT and
KEYIN translate between the typewriter's BCD and a
modified ASCII for use with the BTM interface.

V. Conclusion

The system described herein was operated for several
weeks surrounding the Superior Conjunction of the
MM’71 spacecraft; it provided considerable assistance to
the Celestial Mechanics Experiment team in clarifying
and evaluating ranging data obtained during that critical
period. As can be seen from the deccriptions presented in
this article, the software investment is relatively high, but
much of it may be recoverable for use in other activities.
The modified BTM system has already proven valuable in
software development for a number of projects. MULTI,
the minimal multiprogramming monitor for the 910, was
written with the expectation that the needed data transfer
and conversion operations could be programmed signifi-
cantly easier with such a monitor. This expectation seems
to have been fulfilled. The total 910 range-monitor soft-
ware package seems to be flexible enough that most
experiments involving JGUS and the Sigma 5 could be
performed with it in its present form. For applications
which require a transfer path or data conversion not avail-
able in the present package, MULTI provides a flexible
base upon which the needed software can be easily built,

161

References

1. Timor, U., “Sequential Ranging With the Viterbi Algorithm,” in The Deep Space
Network Progress Report for January and February 1971, Technical Report
32-1526, Vol. I1, pp. 75-79. Jet Propulsion Laboratory, Pasadena, Calif., Apr. 15,
1971.

2. Goldstein, R. M., “Ranging With Sequential Components,” in The Deep Space
Network for the Period May 1 to June 30, 1968, Space Programs Summary 37-52,
Vol. II, pp. 46-49. Jet Propulsion Laboratory, Pasadena, Calif., July 31, 1968.

162 JPL TECHNICAL REPORT 32-1526, VOL. XV

Table 1. 910 i/0 devices

Device description Abbreviation RCB name Subroutine entries

Typewriter TY TYIW TYPPUT

Keyboard KB KB1W KBSETP, KBPULL, KBREL, KBCANC
Paper-tape punch PP PP1W PPPUT

Photo-reader PR PR1W PRSETP, PRPULL, PRREL, PRCANC
TTY output TTO TTOBLK TTOPUT

TTY input TTI TTIBLK TISETP, TIPULL, TIREL, TICANC
Output to Sigma SO SOBLK SOPUT

Input from Sigma SI SIBLK SISETP, SIPULL, SIREL, SICANC

Table 2. Keyin-controlied switches

Table 3. Sigma-controlled switches

Switch Value Meaning Switch Value Set by Meaning
TT 0 Ignore TTY input RANGE ON RNG ON and Get Sigma output from
TT 1 TTY input to PP only <RANGE+ > ranging input device KB,

from Sigma PR, or TT (see Table2)
TT 2 TTY input to PP and Sigma .

RANGE OFF RNGOFForA Get Sigma output from KB
RNG ON Activate ranging (see Table 3) or <RANGE - >
RNG OFF Deactivate ranging from Sigma
RO 1 Ranging output to TY only RGO ON RANGE ONand Send Sigma input to TY
RO 2 Ranging output to TY and TTO S< RGO+ > from
igma
RI KB Ranging input from keyboard RGO OFF RANGE OFF or If RANGE ON, ignore
RI PR Ranging input from photo-reader <RGO—> from Sigma input
RI TT Ranging input from TTY Sigma If RANGE OFF, Sigma
input to TY
NUM nnndd nnn = channel number, dd = day 0 . .
of last teletype message sent TTYON ON RGO ON, RO 2, Send Sigma input to TTO
and header from as well as TY
Sigma
TTYON OFF RGO OFF, RO Do not send Sigma input

JPL TECHNICAL REPORT 32-1526, VOL. XV

< 2,or <EOM>
from Sigma

to TTO

163

Table 4. Operator keyins

Table 5. MULTI subroutines and POPs

Keyin?

Action

bb
!

anything + + +

switch value!

St

anything else!

Send a double escape to BTM
Cancel request for keyin
Ignore this line, repeat prompt

Where switch is a keyin-controlled switch TT,
RNG, RO, RI, or NUM and value is a legal
value for it, set switch to given value

(e.g., RLTT!).

Type values of switches

Type KEYERR, repeat prompt

Name

Parameter

Function

Subroutine (S)

al represents a carriage return, and + + + represents a delete.

164

or POP (P)
INIMON TCB address Initialize MULTI S
and create tirst task
FORK TCB address Create new task P
DIE — Delete current task P
BLOCK RCB address Block on resource P
UNBLOCK RCB address Mark resource P
available
WAIT SRB address Wait for a condition P
true
SIGNAL SRB address Signal condition P
true
SHUT SRB address Signal condition P

false

JPL TECHNICAL REPORT 32-1526, VOL. XV

/ MM'71

Mu-| 920 | GCF-TTY
RANGING | TCP W*NATRAK

JGUS

210 z5

Fig. 1. Experiment configuration

MM-89 16/13/72 ACQ037 FREQ 220238930 :}
(3 T T2 SYN FREQ cT CR HEADER
2597.30 123,230 60.2232 22,0238904 08 11,0090
163932 TO
164058 1.9 =,39617% =,010091 -.193635 03 1.256211500032
164158 2.2 ~,307088 005136 -,189911 03 3.193581472473
164258 3.8 -.31318% 000638 -,188427 03 7.868981855773
164358 4.0 814683 000466 -,187977 03 7.868081855773
164458 5.0 916528 000725 ~,187422 23 7.068381855773
164558 6.0 915487 -,800045 -.187426 03 7.868081855773 > DATA
164658 7.9 316539 002029 -.186146 03 7.868081855773
164758 8.3 =,315172 003115 ~,186260 03 131.8546557903
165338 9.3 003528 -,222079 -.18941% @3 130,8792283535
165238 1. 000168 -,219623 -.191573 83 139.8166191577
165599 11, 001176 -,020557 -.190550 @3 132.8387229171 J
— S e |
TIME COMP RAW RANGE a b RANGE
NUMBER CHANNEL ‘_\,—__J NUMBER,
DATA POWER microseconds
METER, dBm
(@ x lOb)

JPL TECHNICAL REPORT 32-1526, VOL. XV

Fig. 2. Super Mu printout

165

166

(a) POSSIBLE DATA PATHS (DATA LINK
IS ACTIVE FOR INDICATED SWITCH
VALUE.)

TTO Tl
[]

(b) TYPICAL RANGING CONFIGURA-
TION (1T =2, Rl = TT, RANGE =
ON, RGO = ON, TTYON = ON)

70 R‘

R @ ® o

KB® I oY
SO si

(c) PUNCHING DATA WHILE
PROCESSING OLD DATA (TT =1,
Rl = PR, RANGE = ON, RGO = ON)

1816) m
.

PR."\ ¢ S

KB® I —sory
®
SO si

(d) PUNCHING DATA WHILE USING
BTM (TT = 1, RANGE = OFF)

1O TTI
[]

rRe @ & Curr

KB \o o _eow
) /
SO

Si

Fig. 3. Mu 910 data routing configurations

(a) TCB FORMAT

PRIORITY

CHAIN

STATUS

SAVE AREA

START

{6) RCB OR SRB FORMAT

COUNT

HEAD

Fig. 4. TCB format and RCB or SRB format

JPL TECHNICAL REPORT 32-1526, VOL. XV

